基于局部差分隐私的动态聚类个性化联邦学习

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:个性化联邦学习;差分隐私;DBSCAN聚类;非独立同分布数据;隐私预算中图分类号:TP309 文献标志码:A 文章编号:1001-3695(2025)10-031-3137-07doi:10. 19734/j.issn. 1001-3695.2025.02.0050

Dynamic clustering-based personalized federated learning based on local differential privacy

Zhao Jinye,LiXiaohui†,Jia Xu (SchoolofElectronics&InformationEnginering,LiaoningUniversityofTechnology,JinzhouLiaoning121o,China)

Abstract:Thispaper proposedalocaldifferential privacypersonalized federatedlearningalgorithmintegratedwithDBSCAN clustering (DBLDP-PFL)to addressmodelaccuracydegradationcaused bysingle global models innon-independent and identicallydistributedfederatedlearningscenarios.Themethodfirstlyintroducedalocal diferentialprivacymechanismtoprotect single-clientdataprivacybyinjectingnoiseduringclientraining.Itthenemployedaprobabilisticselectionstrategybasedon clientprivacybudgetstoscrenparticipatingtraining clients.Finall,thealgorithmdesignedadynamicclientclusteringalgorithmwithinthefederatedlearningframework,enablingiterativerefinementoftheglobalmodelthroughcollaborativelearning among clients with similardata distributions.Experimentalresults demonstratethat the proposed algorithmoutperforms NbAFL, LDPKmeans,and HDP-EFL by achieving accuracy improvements of 10.09% 4.38% and 3.33% ,respectively on the MNIST dataset while preserving data privacy.

Keywords:personalizedfederated learning;differential privacy;DBSCANclustering;non-independentandidenticaly distributed data;privacy budget

0 引言

为了满足日益增长的机器学习需求,企业或机构通过共享数据来增强机器学习模型的性能。(剩余18640字)

目录
monitor
客服机器人