基于提示引导多跳推理的医学诊断检索增强生成

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:动态检索增强生成;多跳思维链;医学提示学习;量化重写机制;医学诊断中图分类号:TP391 文献标志码:A 文章编号:1001-3695(2025)10-008-2956-08doi:10.19734/j. issn.1001-3695.2025.04.0089

Retrieval-augmented generation with prompt-guided multi-hop reasoning for medical diagnosis

Qin Le1, Gou Zhinan ,Wang Peiwu³, Zhang Gaofei³,Liu Siyu 1 , Gao Kai³ (1.SchoolofgementSece&IfoatioEngnering,HebeiUniersitfcomcs&usiness,hjzanO;. DeptfCompeecesiUeitelfee& University of Science & Technology,Shijiazhuang O5oo18,China)

Abstract:Thecomplexityofmedicaldiagnosistasksisparticularlyprominentinthemanifestationsofsymptomsandtheirassociations withdiseases.Duetothecomplexitiesof“diferentsymptomsforthesamedisease”and“samesymptomsfordifferentdiseases”,medical diagnosis tasks impose higherrequirements onthereasoning capabilitiesof models.Traditional RAG technologies,withtheirstaticretrievalandsingle-stepreasoing,truggletocapturemulti-levellogicalrelationsips(uchas symptoms $$ departments $$ diseases $$ differential diagnosis).To effectively overcome this limitation,this study proposed a novelframeworkforthemedicalfield:PGM-RAG.Byintegratingbasic knowledgeofthemedicalfield,thisframework provided clearreasoning guidancefor the modelthrough thedesignofprompt information foreach reasoning step.Meanwhile,this framework designed aquantitative rewriting mechanism around strictlycontrolthe accuracyof thecontent generatedbylarge language models,therebyenhancingthereliabilityofthereasoningprocessandtheprecisionof diagnosticresults.Experments on two public medical datasets,Huatuo-26MandWebMedQA,showthatthe proposed model outperformsthe existingbest methods by 12.6% and 8.9% in EM and F1 metrics,respectively. Ablation experiments demonstrate that the multi-hop reasoning chain and the quantitative rewriting mechanism significantly improve the model’s performance.

Key words:dynamicretrieval augmented generation;multi hopchain-of-tought;medical promptlearning;quantitativerewriting mechanism;medical diagnosis

0 引言

当前,越来越多的大语言模型(largelanguagemodels,LLMs)在医学领域涌现并取得一定进展,为疾病预防、治疗、个性化医疗等方面提供了强大支持。(剩余24375字)

目录
monitor
客服机器人