胶囊网络综述

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:胶囊网络;卷积神经网络;姿态;向量胶囊网络;矩阵胶囊网络;优化策略中图分类号:TP183 文献标志码:A 文章编号:1001-3695(2025)10-001-2881-12doi:10.19734/j.issn.1001-3695.2025.03.0066

Overview of capsule networks

Zhu Xiaojuana,Li Weijun a,b† ,Ma Xinyua, Xiong Zhangyoua,Yang Guolianga (a.Schoolofutee&Enin,Ktoofges&aellgentrocessnofateEcs sion,NorthMinzuUniversity,Yinchuan75Oo21,China)

Abstract:Capsulenetworksefectivelyovercome thedatadependencyofconvolutionalneuralnetworksandtheir limitations in modeling object position,pose,and spatial relationships through their unique network structure and dynamic routing algorithm,demonstrating significant potentialandadaptabilty.Tosystematicallreviewtheresearchprogressofcapsulenetwork's architecture,thisrticlediscusedfundamentaltoriesndoptimiationtrategies,experimentalcomparisons,andaation domains.Firstly,itintroducedthebasicarchitecturesandcorealgorithmsofvectorcapsulenetworksandmatrix capsule networks,andaalyzedvariousoptimizationstrategiesalong withtheiradvantagesanddisadvantages.Next,experimentalcomparisons evaluated the performance ofcapsule networksand their improved models.Furthermore,thispaper explored applicationsofcapsulenetworksinbectdtection,heathcare,andtrasportation.Finalytoutlinesfutureresearchdectiosnd development trends to guide further advancements in the field.

Key words:capsulenetwork ;convolutional neural network;pose;vectorcapsule network ;matrix capsule network;optimization strategies

0 引言

卷积神经网络(convolutional neural network,CNN)[1,2]在计算机领域取得了突破性进展,在计算机视觉、机器学习等多个领域得到了广泛的应用[3],如图像处理[4]、自然语言处理[5]等。(剩余36948字)

目录
monitor
客服机器人