融合动态传播网络与双重特征差异的社交网络谣言检测模型

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:特征差异;动态传播网络;谣言检测;社交网络

中图分类号:TP391 文献标志码:A 文章编号:1001-3695(2025)10-015-3012-07

doi:10.19734/j.issn.1001-3695.2025.03.0061

Rumor detection model in social networks integrating dynamic propagation networks and dual feature differences

Xu Guiqiongat,He Sihua,Li Weiminb (a.SchoolofManagement,b.SchoolofComputerEngineering&Science,ShanghaiUniversity,Shanghai2OO44,China)

Abstract:Mostof theexistingrumordetectionmodelsrelyheavilyonstaticinformation,makingitdificulttoreflectthedynamicpropagationcharacteristicsofrumors.Moreover,these modelsoftenoverlookthefeaturediferencesanddynamicevolutionin dimensionssuch as emotionalpolarityand thematicsemantics between theoriginal postsandcomments.Tosolve this problem, this paperinnovativelyproposedanintegratingdynamicnetworkanddualfeature diferences model(DNDF)forrumordetection insocial networks.Themodelaimedtoimprovedetectionefectivenessbyanalyzingtheevolutionofmultidimensionalfeatures. Firstly,itusedadualfeaturediffrencemoduletoanalyzefeaturevariationsinemotional polarityandthematicsemantics betweenoriginalpostsandcommentsequences.Thenitcombined propagation graphsequencesandapplied BiSTMtogeneratedifferential featuresequences.Finally,itintroducedaco-atentionmechanismtosrengthentheinteractivelearningbetweentext features andemotionaldiference features,aswellasbetween thematicdiffrence features.Experimentsonpublicdatasets PHEME and WEIBO show that the DNDF model increases the accuracyby 0.3% and 2% respectively.The model outperforms mainstreambaseline models inmultiple indicators,such as F1 ,andconfirms its effectivenessin rumor detection in social networks. Key words:feature difference;dynamic propagation network;rumor detection;social network

0 引言

社交网络特有的开放性与便捷性,使其演变为网络谣言传播扩散的主要途径。(剩余19248字)

目录
monitor
客服机器人