移动边缘网络的内容缓存和推荐联合决策方案

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:移动边缘网络;协同缓存;内容推荐;多臂轮赌;强化学习

中图分类号:TP393 文献标志码:A 文章编号:1001-3695(2025)10-028-3114-08

doi:10.19734/j. issn.1001-3695.2025.03.0079

Joint content caching and recommendation decision-making scheme in mobile edge network

Zhou Jipeng1,2,Tang Piao²+ (1.SchlofifcalIellgceuangouashngClleGuangzu53na;2hlofforatioec logy,Jinan University, Guangzhou , China)

Abstract:Contentcachingatthemobileedge network isanefectivewayof mitigating backhaulloadandimproving user experience.Therecentstudies have foundthatthecombinationofcaching andrecommendationcan improvetheeffciencyof edgecaching andreduce thetransmision delay.Underthecollaborativeedgecaching network modelwithrecommendation support,the problemof edge caching and contentrecommendation is modeledas amulti-agent multi-armed bandit problem. Firstly,the paperusedGCNmodel topredictuserpreferencesandobtaincontent popularity.Secondly,withdefining the recommended exploration windowbasedonuser tolerancerateforcontentrecommendation,thepaper designed the strategyof explorationandutilizationandthe strategyof incomerenewal,and proposedamulti-armedbanditbasedcachingandrecommendation algorithmMAMAB-JCRto implementcachingandrecommendationjointdecisions.Finall,thepapercomparedthe proposed MAMAB-JCR algorithm withthree baseline algorithms(DDQN,JCCR and MAMAB-C)in experiments.Experimental results showthattheproposedalgorithmcanreducedelayofcontent ransmision,enhancecache hitratioandimproveuser experience.

Key words:mobileedge network(MEC);cooperativecaching;contentrecommendation;multi-armedbandit;reinforcement learning

0 引言

随着在线社交媒体的兴起和移动终端设备数量的飞速增长,移动网络中的流量以指数级的速度增长。(剩余21010字)

目录
monitor
客服机器人