基于多粒度渐进式融合的多模态命名实体识别方法

打开文本图片集
关键词:多模态命名实体识别;多模态融合;多粒度;渐进式融合;命名实体识别中图分类号:TP391 文献标志码:A 文章编号:1001-3695(2025)10-017-3027-07doi:10.19734/j. issn.1001-3695.2025.03.0071
Multimodal named entity recognition method based on multi-granularity progressive fusion
Ying Xujiana,Zhu Yanhuib†,Chen Haoʰ,Man Fangtengα,Zhang Zhixuanʰ (aSchoolofuefleliclspUest nan 412007,China)
Abstract:Toaddressthelackoffine-grainedsemanticsand inconsistent multimodalrepresentationsinexisting multimodal named entityrecognition methods,thispaperproposedamulti-granularityprogresivefusionapproach formultimodal named entityrecognition.Firstly,theproposedframework incorporatedadynamicgatedfilteringmechanismtoselectivelyextractvisual regionfeaturesrelevanttoextualsmanticsviaross-modal dynamicweighting.Additionaly,theframework integratedrossmodalalignmentandadversarialperturbationmechanisms tostrengthenconsistencyandgeneralizationbetweentextualfeatures andglobalvisualrepresentations.Secondlyitdesignedamulti-levelprogressivefusionnetworktoconstructanoisesuppressedandsemanticenhancedmulti-granularityrepresentationlearningsystem.Thisarchitecturehierarchicallintegrated text-level,text-regionmage-level,andext-globalimage-levefaturesthroughaparallelmulti-stagefusionsrategyfectielycombining hierarchical featurevectorsacross diferent granularities.ExtensiveexperimentsconductedontheTwiter-2015 and Twitter-2O17 benchmark datasets demonstrate that the proposed method achieves average F1 score improvements of 0.89% (204号 and 1.08% ,respectively,compared with other multimodal named entity recognition approaches,which confirms the model’s effectiveness in named entity recognition tasks.
Keywords:multimodal namedentityrecognition(MNER);multimodalfusion;multi-granularity;progressivefusion;named entity recognition(NER)
0 引言
命名实体识别(NER)是自然语言处理(NLP)中的一个基本任务[1],旨在从文本中识别并定位具有特定意义的实体,并将其分类到预定义的类别中。(剩余17274字)