基于练习题目文本语义嵌入的知识追踪

打开文本图片集
关键词:深度学习;机器学习;教育领域的人工智能;自然语言处理;预训练语言模型;知识追踪中图分类号:TP391 文献标志码:A 文章编号:1001-3695(2025)10-010-2972-08doi:10.19734/j.issn.1001-3695.2025.03.0086
Exercise semantic embedding for knowledge tracing
Cheng Zhia†,Li Jinlongb (a.SchooloftfeligeceelfeeceUestfeee, Hefei 230026,China)
Abstract:Toaddress theisseof por performanceofknowledgetracing modelsonnew exercises inopen-domain exercise scenarios,this studyinvestigated exercisesemanticembedding forknowledgetracing.The modelcomprised twostages:the firststageutilizedafine-tunedpre-trainedlanguage modeltoobtain exercisesemanticembedding,andthesecondstageemployed theembedingstocomplete knowledge tracingtaskswhile designingananswerencoder tocapture students’response information.To validate the model'sperformance,this paper conducted comparative experiments onanEnglish reading comprehensioneducationdataset,comparing themodel with state-of-the-artknowledge tracing models.Experimental resultsshow thatthe modelsignificantlyoutperforms comparative modelsinAUCandACC,effectivelyimproving the knowledgetracingperformance for new exercises inopen-domaindata.Theproposed methodachieves efective modelingof new exercises through exercise semantic embeddngand providesan innovativesolution fortheapplicationof intelligent education systems iopendomain data.
Keywords:deeplearning;machinelearing;artificial inteligence ineducation;natural language processing;pre-trained language model;knowledge tracing
0 引言
随着智能教育系统的蓬勃发展和大规模开放在线课程(MOOC)的广泛应用,教育领域正经历一场深刻的变革。(剩余21301字)