基于Puma算法引导帕累托前沿的高效多目标提示优化方法

打开文本图片集
关键词:提示优化;多目标优化;美洲狮算法;帕累托最优;大型语言模型中图分类号:TP301.6 文献标志码:A 文章编号:1001-3695(2025)10-019-3041-12doi:10.19734/j.issn.1001-3695.2025.03.0074
Puma-guided Pareto optimization for eficient multi-objective prompt generation
Dong Xiangqian1,Xiao Zheng2,3t (1.LargeModelApcon&ResechCte,eduNesUisityed844,na;2.hooftellgentfcu &InformationEnginering,icanTecholo&usinessColge,Chgu3Cha;olofIfoatioEnneia dong Vocational College of Hotel Management, Dongguan Guangdong 52396o, China)
Abstract:Existing promptoptimizationmethodssuferfrom limitations inscalabilityandadaptivity.Toaddress theseissue, this studydevelopedamulti-objectivepromptoptimizationframework,Puma-MOPT,basedonthePumaalgorithm.Theframwork integratedtheadaptive phase switchingand globalsearch capabilitiesofthePumaalgorithm with PromptWizard’sprompt generationand evaluation mechanism toenableautomatic promptsearchandmulti-objective trade-off.To improvesearchefficiencyand enhance generalizationinfew-shotscenarios,Puma-MOPT incorporatedasemanticsimilarityconstraintandemployedanadversarial filtering technique.Experimentalresultsinfivedomainsincluding mathematical reasoning,medical questionanswering,andcode generation demonstratethattheframework significantlyoutperformsbaseline methodssuchas NSGA-II,MOEA/D,EvoPrompt,andPromptWizard onmultipleevaluation metrics.Puma-MOPT providesaneficient, robust,and general solution for large language model (LLM) prompt engineering.
Key Words:promptoptimization;multi-objectiveoptimization;Pumaalgorithm;Paretooptimality;large languagemodel
0 引言
大语言模型(large languagemodel,LLM),如GPT-4、Deep-Seek,在智能问答、代码生成、医疗辅助诊断等领域展现出革命性的潜力。(剩余33259字)