DLC-TSM:一种用于加密恶意流量分类的高维特征图方法

打开文本图片集
关键词:加密恶意流量分类;深度学习;马尔可夫链;马尔可夫转移概率矩阵;流量处理;特征过滤中图分类号:TP393.0 文献标志码:A 文章编号:1001-3695(2025)10-032-3144-08doi:10.19734/j. issn. 1001-3695.2024.12.0535
DLC-TSM : multi-dimensional feature image approach for crypto-malicious traffic classification
Guo Yijie¹,Luo Qinl†,Wu Peng² (1.SchoolofmpuerSee&SoftreEgneg,SouhtetroleUniesityhgduh;loff &Engineering,Sichuan TourismUniversity,Chengdu 61O5Oo,China)
Abstract:Toaddressthe limitationsofexisting encryptedmalicious traffcclasificationmethods,suchasrestrictedfeature representationapabilityhighiseensitivity,andinsuficientmodelgeneralization,thistudyproposedanecrytedalicious trafficclasificationmethodbasedondeeplearningusing three-dimensionalsecond-orderMarkovmatrix images(DLCTSM).Byintegratingthefeature transformationofthree-dimensionalsecond-orderMarkovprobabilitymatrices withdeeplearning,itconvertedteoriginaletworktraffcintedgreen-blueRGBfeatureimages.Itapledaninnovativetresholdfltering algorithmtoenhance featurerepresentation,andemployed dep learning neural network to extract dep image featuresforprecisetraficlassificatio.Experimentalresultsdemonstratethefectivenessoftheproposedmthodacrossfourencrytedmalicious traffic datasets in three diferent scenarios,achieving peak accuracies of 99. 33% ,99. 07% , 97.98% ,and 98. 17% ,respectively.DLC-TMeffectivelyaddresesthetradeoffbetween encrytedtrafficfeature extractionandclasificationaccuracy, and its image-based representation strategy offers anovel technical approach for traffc analysis research.
Key words:crypto malicioustrafic clasification;deep learning;Markovchain;Markov transfer probabilitymatrix;traffic processing;feature filtering
0 引言
加密恶意流量是指使用加密技术处理的恶意数据流,通过加密协议确保恶意数据流在传输过程中保持隐蔽。(剩余18278字)