基于任务抢占的VEC计算卸载与缓存优化方法

打开文本图片集
关键词:车载边缘计算;计算卸载;内容缓存;任务抢占;改进异步深度强化学习中图分类号:TP929.5 文献标志码:A 文章编号:1001-3695(2025)10-029-3122-07doi:10.19734/j. issn.1001-3695.2025.04.0083
Tsk preemption-sed computtionl offloding nd cche optimiztion method in VEC
Shi Jie a,b† ,Tang Honga,ʰ,Liu Zixingaʰ,Yan Xingruia,b (a.SchoolofComuications&IforationEnginering,.ChongqingKeyLaboratoryfobileCommunictionsTecologyChonging University of Posts& Telecommunications,Chongqing 40o065,China)
Abstract:Withtherapidadvancementof intelligenttransportationsystems,challengessuchasunevencomputingresourceallocationand task latencysensivity in vehicularedge computing have become increasinglyprominentHowever,staticresource allcationmethods inexisting studiesareinsuffcientfordynamicvehicularenvironments.Toaddress thisisse,this paper proposedataskpreemption-based jointoptimization frameworkforcomputationofloading andcaching,enabling elasticcache expansionandeficienttask scheduling.Firstly,thispaper establishedacollborativecomputing modelformultiplevehicles androadsideunit,considering task priorityandutilizingidleresourcesfromparkedvehicles.ItintroducedaZipfdistributionbasedcaching strategy toimprovecontent placement.Thenthis paper integratedatask preemptionmechanism toprioritizeurgenttasksandallviateRSUoverload.Subsequently,this paper formulateda jointoptimizationproblemto minimizeaverage systemdelaybyoptimizingofloadingandcaching strategies.Astheproblem was high-dimensionalandnonlinear,this paper proposedadeepreinforcementlearning based improvedasynchronousadvantageactor-criticalgorithm.Simulationresultsdemonstratethattheproposedmethod significantlyreduceslatencyand improves task completionrates,enhancinguserexperience in practical vehicular environments.
Key words:vehicular edge computing(VEC);computation ofloading;content cache;task premption;improved asynchronous deep reinforce learning
0 引言
随着物联网技术的不断发展,移动边缘计算(mobileedgecomputing,MEC)已广泛应用于智能家居、智慧医疗、新能源车辆等对实时性敏感的领域[1]。(剩余16736字)