基于超密集组网的无线传输容量优化方法研究

打开文本图片集
摘要:超密集组网(UDN)是5G/6G网络扩容关键技术,但微基站密度大幅提升导致跨层干扰。鉴于此本文提出了优化方法:利用分布式探针采集参数,改进支持向量机识别容量瓶颈,构建深度强化学习自适应模型优化资源。实验表明,该方案有效提升了吞吐量和频谱效率,相较于传统方法具有明显优势。
关键词:超密集组网;无线传输容量;支持向量机;优化方法
doi:10.3969/J.ISSN.1672-7274.2025.03.002
中图分类号:TN 929.5 文献标志码:B 文章编码:1672-7274(2025)03-000-03
Research on Optimization Methods for Wireless Transmission Capacity
Based on Ultra-Dense Network
WU Lian
(Diqing Branch of China Mobile Communications Group Yunnan Co., Ltd., Diqing 674499, China)
Abstract: Ultra-Dense Network (UDN) is a key technology for capacity expansion in 5G/6G. However, the increase in the density of micro base stations leads to cross-layer interference. This paper proposes optimization methods: using distributed probes to collect parameters, improving the Support Vector Machine to identify capacity bottlenecks, and constructing a deep reinforcement learning adaptive model to optimize resources. Experiments show that this scheme effectively improves throughput and spectral efficiency and has obvious advantages compared with traditional methods.
Keywords: ultra-dense network; wireless transmission capacity; support vector machine; optimization method
0 引言
在5G网络和未来6G网络中,超密集组网(Ultra-Dense Network,UDN)被认为是提高网络容量、支持海量连接设备的关键技术之一[1]。(剩余4600字)