基于Stacking集成的上市公司债券违约预测

打开文本图片集
中图分类号:TP39;F832.5 文献标识码:A文章编号:2096-4706(2025)20-0171-07
Abstract: With theprosperityand developmentofthe bond market,creditrisk emerges,andbond defaults occur frequently. This papertakesthebonds issuedbylistedcompaniesfromJanuary2014toDecember2O23astheresearchobject,selects indicators from the financialand non-fianciallevels,selects the Stacking ensemble framework from seven Machine Leaming models,andestablishesabonddefault prediction modelTheresultsshowthat thefour modelsofRF,GBDT,XGBoostand LightGBM have beter prediction efectsonbond defaultsof listedcompanies.Among them,the predictionaccuracyof GBDT is 95.4% ,andtheclosertothe timeofdefault,thebeterthemodel fiting effect.Theprediction performanceofthe Stacking ensemble model is significantly improved,and the AUC value is increased by 0.7%~11.3% .Cash ratio,financial expense ratio, total issuance and coupon rate have a greater impact on bond default.
Keywords:bond default;MachineLearning; Stacking;ensemble algorithm; SHAP
0 引言
近年来,我国证券市场发展良好,债券市场是企业和政府融资的重要途径,在促进经济发展和提升资本市场活跃度方面发挥了重要作用。(剩余9249字)