多输入特征约束的电力走廊点云分割网络

打开文本图片集
中图分类号:TP391.4 文献标识码:A 文章编号:2096-4706(2025)20-0149-06
Abstract: The correct segmentation of the point cloud of the power corridor is crucial to power inspection tasks.Most existingDeepLeaming methodsofteninputiformationsuchascoordinates,color,intensityandechoasaunifedfeature tothe networkinthepointcloudsegmentationofpowercorriors,whichmakes itdificultforthemodeltolearefectiefeaturesand amplify noiseinterference.Inthisegard,amulti-eaturecontrolmoduleisproposed toacheveweightcontrolofiputfeatures to enhance efectivefeatures and suppressnoise efects.Inaddition,the main network adopts a decoupled structure,which makes themodel paymoreatentionto thelocalgeometric featuresandtheirfusion with thesemanticfeatures beforeandafter downsampling,thus effctively improving thenetwork performance.Theexperimentalresultsonthepowercorrdorscenario show that the proposed multi-feature control module can bring 2%~3% Mean Intersection over Union (mIoU) improvement to the backbone network,and the overall segmentation performance is 4% higher than the PointNeXt model, indicating the advancement and effectiveness of the method.
Keywords: power corridor; point cloud; semantic segmentation; decoupling; multi-feature input
0 引言
随着我国电力系统基础设施的不断完善,架空输电线路总里程持续增长,长距离输电线路巡检的重要性也日益凸显。(剩余9482字)