基于GraphRAG的物流知识问答系统应用研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391;TP182 文献标识码:A 文章编号:2096-4706(2025)20-0040-04

Abstract: In view of the problems existing in traditional logistics knowledge processing methods,such as knowledge extractionrelying on manual labeling,high cost and time consumption,this paper proposes a logistics Knowledge Graph construction method based on a Large Language Model.By designing prompt words and with the help of the semantic understandingandreasonngcapabilitiesoftheLargeLanguageodel,knowledgeisextractedfromloisticselateddatadthe extracted knowledge isstored intheNeo4j graphdatabase.Inthe implementationofthequestionansweringsystem,GraphRAG technologyisusedtoretrieverelevant entities,elationshipsandtheiratributesfromthelogistics KnowledgeGraph,soas to enhanceandoptimize the prompt words,providereliablebackground knowledge support fortheLarge Language Model to generateanswers,and efectivelyreducetheilusion phenomenonofLarge Language Model.System testsshowthatthismethod effctivelyalleviates the problems ofknowledge fragmentationandlogicaljumpin traditional questionansweringsystems.

KeyWords: logistics knowledge; question answering system; Large Language Model; Knowledge Graph; GraphRAG

0 引言

随着行业数字化转型加速,知识问答系统成为提升效率的关键工具。(剩余5211字)

目录
monitor
客服机器人