基于师生网络协同的动态阈值半监督学习图像分类研究

打开文本图片集
中图分类号:TP273;TP242 文献标识码:A 文章编号:2096-4706(2025)20-0055-06
Abstract: The application of semi-supervised learning in image processing receives wide atention. Among them, the method basedonconsistencyregularizationand pseudo-label improves the performanceof the model by effectivelyusing a largeamountofunlabeleddata.However,mostoftheexisting methods use high fixedthresholds to generatepseudo-labels forunlabeleddatawhichmakesitdiffculttofectivelyutilizenlabeleddata.Inadition,theteachernetworkmaymislead the student network due to performance fluctuations. Aiming at the above problems,this paper proposes a dynamic threshold semi-supervised learning image clasificationmethod MTDT.This methodonlysupervises studentnetworktrainingbyteacher network whenteachernetworkperformanceisbettr thanstudentnetwork.Atthesametime,accordingtotheleaingstateof themodel, theconfidencethresholdisdyamicalldjustedinandaptivemaner.TeexperimentalsultsonCFA-1,ST10 and SVHN public datasets show that the proposed method has higher classification accuracy.
Keywords: adaptive threshold; pseudo-label; semi-supervised; consistency regularizatior
0 引言
深度学习之所以能表现出优异性能,很大程度上依赖于充足的标记数据对模型进行监督训练。(剩余9958字)