基于知识图谱和RAG技术的古诗词智能问答系统

打开文本图片集
中图分类号:TP391.1 文献标识码:A 文章编号:2096-4706(2025)20-0115-07
Abstract:In viewofthe hallcination problems such asauthor confusionanddynastydislocation in thefieldof ancient poetry,this project innovatively proposes a solution based on Retrieval-Augmented Generation (RAG) technology. By constructing a professional Knowledge Graph ofancientpoetryand designing multi-dimensional prompt engineering,thesystem caneffectivelycorrect theerrorsoftheLargeLanguage Model inthecomplexsemanticunderstandingof poetrybackground, historicalcotextadspcts.InsofseificiplemetatiofstlymedEntityecogiioisuedttctt keyinformationofthe problem,andthenauthoritativecontentisobtained through KnowledgeGraphretrievalasthebasis for generation.Finall,RAGas evaluationverifiesthatthehallucinationrateof theLargeLanguage Modelissignificantlyreduced. This studyflls thegapintheacuracyof theapplicationoftheLargeLanguageModelinthefeldof traditional cultureand provides areliable technical path forAI to enable cultural inheritance.
Keywords: hallcination problem; Retrieval-Augmented Generation; Natural Language Processing; Knowledge Graph Large Language Model; Named Entity Recognition
0 引言
随着大语言模型在自然语言处理领域的迅猛发展,其在各类智能问答系统中的表现已获得广泛关注,且智力水平呈现“涌现”现象[。(剩余11031字)