面向无人机航拍目标检测的YOL0系列算法研究进展

打开文本图片集
中图分类号:TP391 文献标识码:A 文章编号:2096-4706(2025)20-0027-08
Abstract:UAVs integrated with ObjectDetectiontechnologyleverage theiraerial perspectiveand highmobilityto provide significantfexibilityforjectlocalizationanddatacollction.However,inpracticalaplications,UAVaerialphotoraphy based Object Detection faces challnges such as stringentreal-time requirements,ahigh proportionofsmallobjects,and compleximagebackgrounds,limiting its development and application.Therefore,designing algorithm models capableof efectivelyadapting tothecharacteristicsofUAVaerialimageryis particularlyimportant.Sinceitsiception,theYOLOseries algorithmshaveundergonemultipleterations.Itachevessimultaneousobjectclassfcationandlocalizationviaasinglenetwork forwardpass,ofering excellentreal-time performane.This papersummarizestheresearchprogressof themain versionsof the YOLO seriesalgorithms and presents theirapplications in UAVaerial photography-based ObjectDetection,aiming toprovidea reference for subsequent research.
Keywords: UAV aerial photography; Object Detection; YOLO; Computer Vision; smal Object Detection
0 引言
近年来,随着无人机技术的飞速发展和计算机视觉技术的进步,无人机在目标检测领域展现出巨大应用潜力,无人机航拍目标检测逐渐在智慧城市建设、灾害监测和救援等场景发挥重要作用。(剩余15921字)