基于APF-RRT*算法的农田智能机器人路径规划

打开文本图片集
关键词:农田智能机器人;路径规划;APF算法;RRT 算法;路径优化中图分类号:TP242.6 文献标识码:A 文章编号:2096-4706(2025)19-0177-06
Abstract: In order to improve the eficiencyand safetyof path planning incomplex environments for intellgent farmland robots,a path planning method combining the Artificial Potential Field (APF) method and RRT* algorithm (APF-RRT*) is proposed.The methodusestheglobalsearchcapabilityofRRT*togeneratetheinitialpath,andoptimizesthepathlengthand smoothnesstoreduce theredundant nodes by improvingAPF.The improvedAPF guidesthe path growththrough the synergyof gravitationalandrepusive forces toavoidobstaclesand avoidlocal minima.Simulationcomparison experiments basedon1 m×1000m farmland environment show that theAPF-RRT*plans the shortest path length (169.2m) ),whichisreducedby 5.3% 0.6% ,and 1.9% compared with RRT, RRT* ,and APF-RRT, respectively. The planning time is only 2.5s ,whichisshortened by 60.3% and 47.9% compared with RRT and RRT* .The number of visited nodes (56) and the number of iterations(780) are significantlyeduced.Thealgorithmperformswelin termsofpathsmoothnessobstacleavoidance effciencyandglobalearch providing an efficient solution for automated farmland operations.
Keywords: inteligent farmland robot; path planning; APF algorithm; RRT* algorithm; path optimization
0 引言
随着农业现代化的加速推进,农田智能机器人在农业生产中的应用日益广泛,成为提升农业生产效率、降低人力成本、实现精准农业的关键技术之一。(剩余7376字)