基于最小二乘法改进的ARIMA模型的设备内部状态预测方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391.9 文献标识码:A 文章编号:2096-4706(2025)19-0157-07\

Abstract: With the increasing complexity of engineering systems,traditional physical models and experience are strugling tomeetthepredictionrequirementsof internalstateofequipment.Inthispaper,animprovedARIMAmodelbased onleastsquaresmethodis proposed topredicttheremaining usefulifeofequipmentandother parameterestimationmethods. Firstly,the leastsquares method isusedtodetrendthetraning setsequence,andthentheARIMA modelisestablishedto mine theinteralrelationshipof thedetrended sequenceand predicttheequipment status withhigh precision.Thealgorithmcan efectivelycapturetheinternalrelationshipandtrend betweendata,and hasstrongadaptabilitytodynamicdata.Taking the batteryasanexample,thispaperpredictsteresiualifeandchagequantityunderdiferentconditions,andthepredictioefect is good intheshrt term.Theaverageabsolute errrofthepredictedresiduallife isonlyOO231,andtheroot meansquareerror is 0.0305.Indirentdischargeenviroments,theaverageabsoluteerorofresidualchrgeis0l9,O25200o7ndthe rootmeansquareerroris0.0162,0.0359,0.O062,whichproves thatthe modelcanpredicthestateoftheequipmentwithhigh precision in the short term.

Keywords: least squares method; ARIMA; residual life prediction; equipment internal state prediction

0 引言

在现代工业生产中,工程设备的健康状态直接影响生产效率、产品质量和经济效益[1-3]。(剩余10084字)

目录
monitor
客服机器人