大模型驱动下的网络投诉自动化分类与智能响应系统设计

打开文本图片集
中图分类号:TN915.07;TP311 文献标识码:A 文章编号:2096-4706(2025)19-0121-05
Abstract: With the expansion of user scale and the increasing service complexity in the telecommunications industry, traditional networkcomplaint handling models face challenges suchas ineffciencyand highcosts.This paper proposes a large model-driven automated clasification and intelligent responsesystem for network complaints.By leveraging the Model Context Protocol(MCP),thesystemachieves multimodaldata fusionanddynamictask orchestration,andconstructsafourlayercollaborativearchitecturecomprising prception,analysis,decision-making,andexecutionlayers.Thesystemitegates OCR,ASR,andNLPtechnologies for multimodalcomplaintanalysis,combines Retrieval-Augmented Generation (RAG)with reinforcementlearningalgorithms tooptimizedecision-makingprocesses,andsupports high-concurrencyprocessngofupto100 000 daily work orders.Empirical results demonstrate thatthe systemreduces response time tolessthanone minute,improves classification accuracy to over 85% ,and cuts labor costs by 50% ,providing a viable pathway for intelligent transformation of the telecommunications industry.
Keywords: large model; multimodal fusion; Model Context Protocol; Retrieval-Augmented Generation
0 引言
当前通信行业正处于数字化转型的关键阶段,用户对服务响应速度和问题解决效率的要求日益提高。(剩余6321字)