基于VisionTransformer的混合型晶圆图缺陷模式识别

打开文本图片集
中图分类号:TN305;P391.4 文献标识码:A 文章编号:2096-4706(2025)19-0026-05
Abstract:Wafer testingisanimportantpartof thechipproductionproces.The identificationandclasifcationof wafer mapdefectpatems playakeyrole inimproving thefront-endmanufacturingprocessIntheactual productionprocess,various defects mayappearat thesametime,formingamixeddefect type.The traditional Deep Learning method has alowrecognition rate for mixed wafer map defect information. Therefore,this paper proposes a defect recognition method based on Vision Transformer.This methoduses the multi-head self-atention mechanism toencode theglobal features of the wafer mapand realizestheeffcientidentificationofmixedwaferdefectmaps.Theexperimentalresultsonthemixeddefectdatasetshowthat the performance ofthis method is better than that of the existing DeepLearning model,and the average accuracy is 96.2%
Keywords: computer vision; wafer map; defect recognition; Vision Transformer
0 引言
别速度。(剩余7623字)