基于VisionTransformer的混合型晶圆图缺陷模式识别

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TN305;P391.4 文献标识码:A 文章编号:2096-4706(2025)19-0026-05

Abstract:Wafer testingisanimportantpartof thechipproductionproces.The identificationandclasifcationof wafer mapdefectpatems playakeyrole inimproving thefront-endmanufacturingprocessIntheactual productionprocess,various defects mayappearat thesametime,formingamixeddefect type.The traditional Deep Learning method has alowrecognition rate for mixed wafer map defect information. Therefore,this paper proposes a defect recognition method based on Vision Transformer.This methoduses the multi-head self-atention mechanism toencode theglobal features of the wafer mapand realizestheeffcientidentificationofmixedwaferdefectmaps.Theexperimentalresultsonthemixeddefectdatasetshowthat the performance ofthis method is better than that of the existing DeepLearning model,and the average accuracy is 96.2%

Keywords: computer vision; wafer map; defect recognition; Vision Transformer

0 引言

别速度。(剩余7623字)

目录
monitor
客服机器人