基于LSTM-RF模型的拉萨市空气质量预测分析

打开文本图片集
中图分类号:TP391.4;X87 文献标识码:A 文章编号:2096-4706(2025)19-0152-05
Abstract: With the accelerationof industrializationand urbanization, China's economic level has significantly improved, andairqualityisues have increasinglybecomeafocusof publicconcern.BasedonAirQuality Index (AQI)dataand the concentrations of six major pollutants (PM2.5 PM10. SO2 NO2 CO,and O3⋅ )inLhasa from January1,2015 to December31, 2021,the Random Forest (RF)algorithm is used to identify the pollutant characteristic ( PM10 concentration) highly correlated with AQI. On this basis,the prediction results of the Long Short-Term Memory (LSTM) model and the PM10 concentration are usedasiput features tofurtherconstructtheRFmodeltoimprove thepredictionperformanceand stabilityTheexperimental results showthat thepredictionperformanceofthesingleLSTMmodelisslightlyworsethanthatofthesingleRFmodel,while the prediction abilityof theLSTM-RFcombined model issignificantlyimproved.Thecombined model provides ffective methodologicalsupport forairqualityprediction,andalsolaysasolidsientificfoundationforaccuratepolutionpreventionand control, environmental governance and policy formulation.
Keywords:AQI; LSTMmodel; RFmodel; LSTM-RF model
0 引言
我国经济与科技的迅速发展显著提升了居民生活水平,但环境问题亦日益凸显,逐渐成为制约可持续发展的重要因素。(剩余6898字)