复杂环境下无人机集群的协同控制研究

打开文本图片集
中图分类号:TP181;V279 文献标识码:A 文章编号:2096-4706(2025)19-0043-07
Abstract: Facing the challenges of complex electromagnetic interference,dynamic obstacles and communication security,thispaperproposesahybridframeworkofBionic Hierarchical-Multi-AgentReiforcementLearning(BioRL-Swarm). Through thecolaborative control model of dynamic Hierarchical Network Coupling (HNC)and Multi-Agent Proximal Policy Optimization (MAPPO),itrealizes the dp integrationofdistributed decision-making mechanismandsurvivability communication,andtheclusterautonomyandenvironmentaladaptabilityaresignifcantlyimproved.Simulationresultsshow thatcomparedwiththe traditionalalgorithm,BioRL-Swarmimproves thesuccessrateofdynamicobstacleavoidanceby 23.6% reduces the communication packet loss rate to 1.2% ,and shortens the task execution time by 37.4% ,which showssignificant advantages inmanykey indicators.It provides asolid theoretical basisandreliable technicalverificationforthe engieering application of intelligent unmanned systems in military, agricultural and other fields.
Keywords: UAVcluster; cooperative control; DeepReinforcementLearning;bionic hierarchical network
0 引言
通过对现有文献的系统分析,发现当前无人机集群在复杂环境中面临着三大挑战:一是动态障碍物与电磁干扰的联合建模困难,导致避障成功率普遍低于70% ;二是传统通信协议(如时间分配多路访问协议(TDMA))在出现链路中断时恢复耗时超过 5s ,难以满足应急任务需求;三是集中式决策架构存在单点故障风险,当集群规模超过20架时,失控率将升至40% 。(剩余6238字)