融合U-Net和Transformer的医学图像分割算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391 文献标识码:A

文章编号:2096-4706(2025)19-0062-08

Abstract:To addressthe limitations ofU-Netnetworks incapturing global features,which restricts their performance inmedicalimagesegmentation whereshapeand structuralvariationsaresignificantandtheissueofinsuffcientlocalization capability in Transformer networks when used independentlyduetolackofsuffcientlocalfeatures,this paper proposesadeep segmentationframeworkcalled SeriTansUNet.Firstly,theTransformermoduleisembeddedinthebottleneckpartofU-Netto enhance globalcontextualawarenes.Secondly,aFeatureEnhancementBlock(FEB)isintroducedbetweentheConvolutional NeuralNetwork(CNN)encoderofU-NetandtheTransformer toenrich feature informationfrommulti-semantic spacesand multi-dimensionalchanels.FinallaFusionmoduleisdesignedintheskioectionstodeelyintegratefeatureseractedby theTransformerand CNNencoderalong thechanel dimension,fullyleveragingthestrengthsofboth toimprovesegmentation accuracy.ExperimentsdemonstratethattheproposedSeriTransUNetframeworkachievesoutstandingsegmentationperformance on the Synapse dataset,with aDSC of 81.53% and a HD of 24.15.

Keywords:CNN;Transformer;Feature EnhancementBlock(FEB);Fusionmodule

0 引言

医学影像智能分析领域中,腹部CT图像的多器官分割技术具有重要的临床应用价值。(剩余12935字)

目录
monitor
客服机器人