基于SA-PS0-EIman的万源市地灾危险性评价方法

打开文本图片集
中图分类号:TP183;P694 文献标识码:A 文章编号:2096-4706(2025)19-0141-04
Abstract: Inorder to improve the risk evaluationaccuracyof geological hazards,theElman Neural Network modelbased onSimulatedAnnealingalgorithmoptimizedwithParticleSwarmOptimization (SA-PSO-Elman)isestablishedforthenonlinear charactersticsofgeologicalhazardriskchange,andtraininganalysisisconductedbycombiningthegeologicalhzarddataof Wanyuan City.TheresultsshowthatcomparedwiththeoptimalvaluesofthecommonlyusedBP,ElmanandPSO-ElmanNeural Networkmodels,theMeanSquareEror(MSE)ofSA-PSO-Elmanisreducedby0.0364,theMeanAbsolutePercentageError (MAPE) isreduced by 3.45% ,and thenumberof its iterations isreducedby6 times,which indicates that the SA-PSO-Elman Neural Network model has higher evaluation accuracy and faster convergence speed.
KeyWords: geological hazard; risk evaluation; Simulated Annealing algorithm; Particle Swarm Optimization;Elman Jeural Network
0 引言
万源市地处四川省东北部,位于大巴山腹心地带,地形地貌复杂多样,境内山峦起伏,沟壑纵横。(剩余4979字)