基于机器学习的车险欺诈检测方法研究

打开文本图片集
中图分类号:TP181;TP39 文献标识码:A 文章编号:2096-4706(2025)19-0031-08
Abstract:Automatic detection of potential auto insurance fraud can maintain the market order of the auto insurance industry.At present,te traditional MachineLearning methods facethechallengesofsmalldatavolume,unbalancedcategory distributionandfeatureredundancyinimplementingauto insurancefrauddetection.Aimingat theseproblems,this paperselects LightGBM,XGBoost,AdaBoost andRandomForest models,andadopts asetof methods incudingdatapreprocessng,feature selection,hyperparameteroptimizationandcategory weightadjustment.TheexperimentalresultsshowthattheighestROCAUC valuesofeachmodelare0.9069,0.8407,0.8467and0.8513,respectively.At thesametime,throughthecollaborative analysis basedonfeature frequencyanddecisioncontribution,theimportanceofkeyfeatures is discussed,andthe method is aplied to the practical scenarios.Theresearch shows that this method can efectively improve the accuracy and model interpretabilityofauto insurance frauddetection,and provides amore reliableanti-fraudtoolfor the insurance industry.
Keywords:Machine Learning; feature selection;LightGBM; auto insurance fraud detection
0 引言
保险欺诈,尤其是车险欺诈,已成为一个日益严重的社会问题。(剩余12796字)