基于深度学习的乳腺癌淋巴结转移诊断研究
            
                        
                        
            	
            
                  
                
                
            
            
                
                    
                    打开文本图片集
            
            中图分类号:TP391.4 文献标识码:A 文章编号:2096-4706(2025)16-0150-05
Diagnosis Research on Lymph Node Metastasis in Breast Cancer Based on Deep Learning
ZHU Jiawei, JIN Miao, YU Tong (Clinical College,Anhui MedicalUniversity,Hefei 23oo31, China)
Abstract: Breast cancer is one of the most common malignant tumors in women worldwide.Accurate detection of lymph nodemetastasisisofgreatsignifcanceforitsdiagnosisandtreatment.Inordertoimprovethedetectionacuracyofmetastatic cancercellsinpathologicalimages,aneficientNeuralNetworkArchitectureisdesignedandoptimizedbasedontheNeural ArchitectureSearchalgorithm.ThePatchCamelyondatasetisusedinthesudyandthetrainingsetisandomlytakenbacktofo threesub-trainingsets.TeNuralNtworkArchitectureistaindindependentlyintepredefinedsearchspace,nditsweightsare optimizedthroughscondarytraining.Finallytethree modelsareintegrated inparaleltoimprovetheoverallperformance.The experimentalresultsshowthattheesignednetworkissuperiortothetraditionalResNet-18,ResNet-34andVGG-16inindicatos suchas AUC,andhasasmaller modelsize.Inthe network architecture search stage,theaverage acuracyofasingle model is 73.34% ,and the AUC is 75.53% .After optimization and integration,the accuracy of the final model is increased to 90.12% ,the AUC is increased to 91.3% ,and the model size is only 30.2MB ,which has the advantages of high efficiencyand lightweight.
Keywords: breast cancer; lymph node metastasis detection; Neural Architecture Search; Ensemble Learming
0 引言
乳腺癌是全球女性中最常见的恶性肿瘤之一,其发病率和死亡率在许多国家均居于前列[1。(剩余6788字)