时空变化注意力机制图神经网络的音频事件分类研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP18文献标识码:A

文章编号:2096-4706(2025)16-0057-07

Research on Audio Event Classification Based on Graph Neural Network with Spatio-Temporal Variation Attention Mechanism

ZHANG Mohua,LIU Ji (School ofComputerandInformation Enginering,Henan Universityof EconomicsandLaw,Zhengzhou45o046,China)

Abstract:Audio event classification faces challenges in complex scenarios,andthe existing methods strugle to capture temporalrelationshpseffectively.Toaddressthis,thispaperproposesaSpati-TmporalVariationAtentionbasedGraphNeural Network (STVA-GNN), which models audio-visual segments as sequential graph nodes and leverages a Negative Attention Mechanism to compute spatiotemporal variationfeatures betweenadjacent nodes,enhancing intra-modal andcross-modal dynamic information interactions.Thecore inovations include thata Contextual Information Compensation Module (CICM) capturesspatiotemporalevolutionpaterns,andaCross-Modal Gaph Variation IncentiveModule(CMGVI)enhancesaudionode weightsusingvideo-modalspatiotemporalvariations fordepfusion.ExperimentalresultsontheAudioSetdatasetdemonstrate that STVA-GNNachieves mAPandAUC scores of 0.56and0.94respectively,outperforming mainstream methods.Additionaly it maintains a significant advantage in noisy environments,verifying itsrobustness.

Keywords:audioeventclasification;Spatio-TemporalVariationAtentionMechanism;Temporal GraphNeuralNetwork; change information compensation;cross-modal information fusion

0 引言

音频信号是现实世界信息传递的关键载体,尤其在人工智能领域中,音频事件分析已成为研究的前沿热点。(剩余11893字)

目录
monitor
客服机器人