基于TBANet的人脸微表情识别方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391.4 文献标识码:A 文章编号:2096-4706(2025)16-0034-05

Abstract: Micro-expressionrecognitioncanreveal thereal emotional state individuals,so it shows a widerange applicationprospectsinthefeldsumanomputerinteraction,psholgicaldiagnsisinalinvetigation.Duetoth smallampliudeadsortduraionmicro-expressions,thetradiionalneuraletork modelisdiffculttoefeivelycapture extractthekeyfeaturesmicro-expressons,thuslimitingtheimprovementrecognitionaccuracyInordertosolvethese problems,this paper proposesanew neuralnetworkarchitecture——TBANet (Transformer Block Aggregation Network). Firstly,thehorzontalverticalopticalfowimagesmicroexpresionsaecalculatedbyRAFTalgorithmtocharacterize facial motion information.Secondly,the hierarchical Transformer network isused to encode the motion relationship each partthefacewenthemicro-expressionoccurs,ndthefeaturerepresentationabilityisfurtherehanced.FinallyheBlock Aggregation layer isusedtusethe hierarchicalstructure features toachieve multi-sale informationcapture.Experimntal resultsonthreedifferentdatasetsverifythe effectivenessTBANet.

Keywords: micro-expresson recognition; Transformer; RAFT; optical flow; feature fusion

0 引言

面部表情在辨别人类情感方面起着至关重要的作用[1]。(剩余9214字)

目录
monitor
客服机器人