基于rs-fMRI动态特征融合的阿尔茨海默病诊断
            
                        
                        
            	
            
                  
                
                
            
            
                
                    
                    打开文本图片集
            
            中图分类号:TP391.4 文献标识码:A 文章编号:2096-4706(2025)16-0076-06
Alzheimer's Disease Diagnosis Based on Dynamic Feature Fusion of rs-fMRl
LINKai,WANGi (School of Informationand Artificial Intelligence,Anhui BusinessCollege,Wuhu 241oo2,China)
Abstract:ThedynamicFunctional Connectivity(dFC)networksbasedonresting-state functional MagneticResonance Imaging (rs-fMRI) provide an important approach for decipheringthe pathological mechanisms of Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI).Aiming atthe problems of insuffcient modelingof interactionrelationships between continuous time-series features andthe lack ofmulti-scale spatio-temporal feature fusion mechanisms in existing Dp Learning methods,a DeepLearning framework basedonDynamicFeature Fusion (DFF)is proposed fortheautomatic diagnosisof braindiseasesusingrs-fMRIdata.Experimentalvalidationbasedonrs-fMRIdataof174subjectsfromtheAlzheimer'sDisease Neuroimaging Initiativedatabase shows thatthe proposed method demonstrates emarkable diagnostic performance n both binary and multi-classification tasks.
KeyWords:dynamic Functional Connectivity;dynamic feature fusion;Alzheimer's disease;rs-fMRI;braindisease classification
0 引言
阿尔茨海默病(Alzheimer'sDisease,AD)以进行性认知障碍为特征,是老年人常见的神经退行性疾病,也是导致痴呆最常见的病因[1]。(剩余9288字)