基于ALBERT-BiGRU-BCEWithLogitsLoss的多标签分类方法研究

打开文本图片集
中图分类号:TP391 文献标志码:A 文章编号:2095-2945(2025)24-0054-04
Abstract:Thequalificationreviewoftherecruitmentprocessinvolvesmultipledimensions,whichincreasesthecomplexity anddificultyofclassifcation.Tosolvethisproblem,thispaperproposesamulti-labeltextclasificationmodelbasedon ALBERT-BiGRU-BCEWithLogitsLos.First,theALBERTpre-trainedmodelisusedtoextractglobalsemanticfeaturesofhetext toimprovethemodelsabilitytocapturetextsemanticinformation.ThesefeaturesaretheninputintoBiGRU,andthroughits two-waycontextcapturecapabilities,thecontextdependenciesofthetextarefurtherextracted.Finall,basedonthe BCEWithLogitsLosslossfunction,theprobabilitycalculationandclasificationofthelogsoutputaredirectlycarredout, simplifyingthemodelstructureandimprovingcomputationalstabilityExperimentalresultsprovetheefectivenessofthismethod and can effectively improve the efficiency and accuracy of qualification review.
Keywords: multi-tag clasification; ALBERT; BiGRU;BCEWithLogitsLoss;Natural Language Processing
作为招采流程的准入“过滤器”,资格审查通过对参与主体的条件甄别,确保招采过程公平公正,保障项目质量。(剩余5125字)