基于粒子群算法优化的灰色预测模型路基沉降预测分析

打开文本图片集
中图分类号:U213.1 文献标志码:A 文章编号:2095-2945(2025)21-0030-05
Abstract:Thispaperfocusesonthepredictionofsubgradesetlementofhigh-speedrailway.Inviewofthekeyimpactof subgradesetlementonthestabilityandsmoothnessoftheline,thegreypredictionmodelisselectedaftercomparingvarious predictionmethods.TheprincipleofGM(1,1)modelandtheoptimizationprocessofparticleswarmoptimization(PSO)areitroduced in detail. The 69~339 day settlement observation data of two sections K417+523 and K417+573 in the first work area of ZH sectionofJinan WestRailwayStationofBeijingShanghai highspeedrailwayaretakenasexamples tocarryoutthecaseanalysis. TheresultsshowthatthepredictionefectofPSO-GM(1,1)modelisbeterthanthatofGM(1,1)modelandtheaveragefiting erorsathetwosectionsare3.8%and3.9%respectivelyTheresidualerortestandclassratiodeviationtestshowthatithas higheraccuracyandbeterstability.Thisresearchprovidesanewideaforgreypredictionmodeltodealwithcumulativeors, and proves that PSO-GM(1,1)model has high reliabilityandapplication value in predicting subgrade settlement.
Keywords:high-speedrailway;subgradesettlement; GM(1,1)model;settlementprediction;particleswarmalgorithm
高速铁路以其迅捷的运行速度,对线路的稳定性和平顺性提出了极高的要求。(剩余5326字)