一种用于复杂工业场景的相机标定方法

打开文本图片集
中图分类号:TP391.4 文献标志码:A 文章编号:2095-2945(2025)18-0071-04
Abstract:Circularpatternswithencoded informationare favoredincameracalibrationduetotheirhighaccuracyand stability.However,incomplexindustrialenvironments,calibrationboardsmayfaceisuessuchasrotationandoclusionand traditionalglobalthresholddetectionmethodsarepronetofailure,leadingtocalibrationfalures.Therefore,anewmethod combiningdeplearmingwithedgesubpixeldetectionisproposed.Thismethodfirstdetectstheminimumcircumscribedframeby rotatingtheboundingbox,thenusesaffnetransformationtoeliminateecentrcityerrors,andfinallyuseslocalthresholdsto detectedgesub-pixelstoachieveacuratecalibration.Experimentalresultsshowthattheproposedmethodismoreeficientand robust than traditional methods.
Keywords:camera calibration; coded target;rotated bounding box;deep learning;edgesubpixel detection
计算机视觉的三维测量因非接触、高精度、快速响应和强适应性而广受研究与应用[-]。(剩余4675字)