基于BP神经网络的深部复合岩体变形模式预测

打开文本图片集
中图分类号:TU458 文献标志码:A 文章编号:2095-2945(2025)18-0057-05
Abstract:Predictingthedeformationpaternsof tunnelsurroundingrockisofsignificanttheoreticalandpracticalimportance forguidigtunnelconstruction,dynamicprotection,andensuringthelong-termsafeoperationoftunnels.Topredictandclssify thedefomationpaternsof depcompositerockmases,thisstudyutilizesdatafromcompositerock massmodeltestsandDIC (DigitalImageCorelation)deformationanalysis.ABP(BackPropagation)neuralnetworkisemployedtoestablishthecomplex nonlinearrelationshipbetweentheglobaldeformationofthesuroundingrockandthedeformationpattems,therebyachieving intelligent prediction of the deformation modes.The results show that the coefficient of determination (R2 )between the predicted valuesandtheactualvaluesisO.996,indicatingahighpredictionaccuracy.Thetrainedneuralnetworkdemonstratesastrong capabilityinpredictingthedeformationpattrnsofthesuroundingrock.Theresearchresultscanprovideanefectivemethodfor predicting deformation and fracture in practical engineering.
Keywords:neuralnetwork;compositerockmas;deformationandfracturemode;DICdeformationandanalysisdata; modelraining
受地质环境、岩体强度和高地应力的综合作用,当深埋隧(巷)道穿越软弱破碎岩层时极易发生围岩挤压大变形,常规支护措施难以有效控制,严重时还会导致支护损毁乃至坍塌等后果,对人员安全与货物运输造成威胁]。(剩余5760字)