基于机器学习与深度学习的地基云识别进展

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391.41 文献标志码:A 文章编号:2095-2945(2025)18-0022-07

Abstract:Withtherapid developmentofdeeplearning technology,transfer learning hasalsobeensucesfullyappliedin thefieldofimageprocessingbasedondeeplearning.Inordertoverifythefeasibilityofdeeplearningtechnologycombnedwith transferleaninginground-basedcloudspeciesidentification,andtheefectivenessandadvancementcomparedwithtraditional machine learning methods,thispaperconductsmachine learningandtransferdeep learningonthe SWIMCATground-based clouddataset.Experimentalcomparisonoflearningmethods,experimentalcomparisonoftransferlearningandnon-transfer learning,andvisualanalysisofthecharacteristicsofground-basedcloudsinconvolutionaleuralnetworks.Theadvantagesnd disadvantagesofmachinelearningandtransferdeeplearninginground-basedcloudrecognitionarecomparedandanalyzed throughxperiments,layingatheoreticalfoundationforsubsequentin-depthresearchondeeplearningground-basedcloud recognition algorithms.

Keywords: deep learning; transfer learning; machine learning; ground-based cloud map; visualization

近年来,云及其特性的研究成为各学者的研究重点,尤其是在云检测与分类、云量估计、云移动轨迹预测以及云类型演变趋势预测等动态行为预测领域。(剩余10787字)

目录
monitor
客服机器人