基于集成学习的安卓恶意软件特征提取与检测方法

打开文本图片集
中图分类号:TP311.5 文献标志码:A 文章编号:2095-2945(2025)18-0045-05
Abstract:Android,asthemostpopularoperatingsystemtodayofersconvenience tousersthroughitsopennessandwide application.However,thissameopennessalsoprovidesopportunitiesformalwaredevelopment,posingsignificantthreatstousers personalprivacyanddatasecurity.Toaddressthisisue,thisstudyproposesanintegratedlearning-basedmethodforfeature extractionanddetectionofAndroidmalware.TheauthorizationrequestofAndroidAPKisextractedasfeaturepointsthrough automatedscripts,combinedwithanenhancedsupportvector machine(E-SVM)modelandaconvolutionalneuralnetwork (CNN)modelforintegratedlearningtraining,generatedahybridmodel,andusedtoimprovethedetectionrateofAndroid malware.Final experimental data shows that the detection accuracy rate for malware reaches more than 96%
Keywords:malware;machinelearning;deep learning;inheritancelearning;feature extractionand detection
现如今,Android作为全世界最为流行的作业系统,占有着全世界百分之八十的市场份额,已经拥有了成千上万的用户。(剩余5270字)