遥感数据处理中多源数据融合方法研究

打开文本图片集
中图分类号:P237 文献标志码:A 文章编号:2095-2945(2025)14-0162-04
1,2,3(1.,西安710001;2.陕西省第三测绘工程院,西安71001;3.西安航空学院,西安 710089)
Abstract:Inremotesensing dataprocesing,multi-sourcedata fusion method hasbecomea keytechnologytoimprove the eficiencyandaccuracyof informationextraction.Thispapersystematicalldiscussesthemulti-sourcedatafusionmethodbased onfeaturespaceanddeeplearning,analyzesthediferencebetweenlinearandnonlinearfusionanditsapplicationintheproce offeaturextractionandselection,andfurtherelaboratestheimportanceoffeaturespacedimensionreductiontechnology.Dep learningtechniques,speciallconvolutionalneuralnetworksandself-supervisedlearning,havedemonstratedexcellent performanceinprocessngheterogeneousandmulti-dimensionalremotesensingdata,signficantlyimprovingtheaccuracyand robustnessofdatafusion.Basedonpracticalcases,thispapershowsthespecificefectsofdiferentfusionmethodsonfeature extractionandfusioninmulti-sourcedataprocessng,indicatingthatdeeplearning methodshavebroadapplicationprospectsin the field of remote sensing.
Keywords: remote sensing data; multi-source data fusion; feature space; fusion effect; deep learning
在遥感技术的不断进步与广泛应用背景下,多源数据融合已成为提升数据处理精度与丰富信息内容的关键手段,遥感数据来源广泛,涵盖光学、雷达、激光雷达等多种传感器,这些数据在空间、时间及光谱分辨率上各具特性。(剩余5629字)