基于深度学习的LAFs短临强降水预测模型研究

打开文本图片集
中图分类号:P426.6 文献标志码:A 文章编号:2095-2945(2025)14-0072-04
Abstract:Whenshort-termandimminentrainfallafectsthegenerationofrunoffandthedistributionofwaterresources, accurateforecastingcanbringhugeeconomicbenefitstorelevantdepartments.Inordertoimprovetheacuracyofheavyrainfal forecast,anLAFsshortimminentheavyrainfallforecastmethodbasedonLSTM-Atentioncombinedwiththeaumulatoris proposed.Themodelfirstusesacubicpolynomialinterpolationmethodtogridtheactualobservationelementsoftheground station;Thenthedataisextractedandfusedthroughtheaccumulator;Finaly,theobtainedfeaturefactorsareusedasinputsto themodelformodelprediction.ThreatscoreTSandmeansquareerorareselectedasindicatorstocomprehensivelyevaluatethe performanceof theproposedmodel,andcomparedwithLSTMandConvLSTM.Theresultsshowthattheperformanceof the proposed model is better than the other two models,and its TS score is 2% 业 3% higher than that of the other two models,and 5% (2 higherthantheactualoperationalforecastlevelinthesameregion,indicatingthattheproposedmodelhascertainpracticalvalue.
Keywords:longshort-termmemorynetwork (LSTM);atentionmechanism;feed-forwardnetwork;short-termimminentheavy precipitation; accumulator
短时强降水引发的山洪、城市内涝和地质灾害已屡见不鲜,精准的降水预报对于防洪、水资源管理、空中交管以及能源管理有重要的战略意义。(剩余8653字)