适用于深度学习训练的配电网故障历史样本数据生成研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP18 文献标志码:A 文章编号:2095-2945(2025)14-0063-0

Abstract:Withthedevelopmentofsmartgridanddeep learning technology,theuseof historicalfaultsamples fortraining hasbecomeapowerful meansoffaultdataprocessingindistributionnetworks.Thisstudyadoptsadynamiciterativestrategy: firstly,thedeeplearnigmodelisusedtoidentifythefaulttypesofthedistributionnetwork,andthekeydataissummarized andextractedfromtheidentificationprocessThen,throughacontinuousiterativeprocess,thehistoricalsampledatageerated each time is fed back into the model. Finally,a system model of 10kV line protection detection test is built in Matlab/Simulink, andasimulationtestexampleisbuiltforverification,andtheexperimentalresultsshowthatthemodelisefectiveandfeasible.

Keywords:distributionnetwork failures;faultdetection;deep leaming;dynamic iteration;historical sampledata

在当今信息化、智能化的时代背景下,配电网的自动化水平和智能化[1-2程度不断提高,对故障诊断技术提出了更高的要求。(剩余8178字)

目录
monitor