基于注意力机制与迁移学习的改进ResNet18模型在木材近红外光谱分类中的应用

打开文本图片集
中图分类号:S781.7 文献标志码:A 文章编号:2095-2945(2025)14-0076-04
Abstract:Thedevelopmentofwoodmodificationtechnologyhasmadewoodclasificationakeyproblem,andthedata processngofnear-infraredspectroscopytechnologischalenging.Inthispper,animprovedResNet18modelbasedonaention mechanismandtransferlearningisproposedfornear-infraredspectralclassficationofwoodBasedonResNet18,combinedwith theattentionmechanism,theimportantbandsarefocused,andtransferlearningisusedtoimprovetheeficiencyand generalizationability.Experimentsshowthatthemodelhasexcelentperformanceintrainingtimeandaccuracytheaention mechanismcanimprove theacuracy,andtransfer learning cansolvetheproblem ofsmallsamples,whichprovidesaneffective method for wood spectral analysis,and can be further optimized and expanded in the future.
Keywords: near-infraredspectroscopy;ResNet18 model;atentionmechanism;transfer learning;woodclassificatior
木材是重要自然资源,在多行业广泛应用,其特性使其用于高附加值产品制造。(剩余5726字)