基于RBF神经网络的永磁同步电机匝间短路故障诊断方法

打开文本图片集
中图分类号:TP277 文献标志码:A 文章编号:2095-2945(2025)14-0026-0
Abstract:Inter-tumshort circuitfaultsareoneof themostcommonandserious faultsthatoccrinpermanent magnet synchronousmotors (PMSM).Motorfaultdiagnosistechnologyisanimportantmeanstoimprovemotorreliabityandreducefault loses.Therefore,thispaperproposesamethodbasedonRBFneuralnetworktodiagnoseinter-turnshortcircuitfaultsin permanentmagnetsynchronousmotors.First,afiteelementmodelof inter-turnshortcircuitfaultof permanentmagnet synchronousmotorisestablished.Themotorwindingisdividedintomultiplesub-windings,andthetwoendsofthesubwindingsareconectedinparaleltosimulateinter-turnshortcircuitfaults.Secondly,theestablishedfiniteelementmodelis usedtosimulatethemotorperfomanceunderdiferentfaultdegres.Thepaperanalyzesandextractsfaultcharacteristicsfrom motortorque,phasevoltage,andphasecurent.Finally,afaultdiagnosissystem isestablishedusingRBFneuralnetwork.Ithas benverifiedthat theproposed faultdiagnosis methodcan diagnose diffrent degreesof inter-turn short circuits.
Keywords:permanentmagnetsynchronousmotor;inter-tunshortcircuitfault;faultdegree;faultfeatureextraction;RBF neural network
永磁同步电机(PMSM)具有结构简单、体积小、重量轻和可靠性高等优点-2,被广泛应用于电动汽车、风力发电等领域[3-4。(剩余9267字)