基于机器学习的风光功率预测系统研究

打开文本图片集
中图分类号:TP181 文献标志码:A 文章编号:2095-2945(2025)13-0113-05
Abstract:Withtherapiddevelopmentofrenewableenergytechnologies,addressingtheinherentstochasticity,fluctuations, andintermitencyofwindandsolarpowergenerationthroughadvancedartificialinteligencehasbecomecriticalforindustry advanceent.Thisstudyproposesasmaitintegrated,andonestopforecastingsystemarchitecturecomprisingtwocoreodules: amachinelearningalgorithmmanagementplatformformodeldevelopmentandoptimization,andaforecastingsupportservice platformforoperationaldecision-making.Thesystemprovidesend-to-endtechnicalsupportspanningmodeltraining,algorithm selection,scenario-specificservices,energytradingassistance,andbenefitalocationmechanisms.Byenablingnationwidesharing ofdataresources,optimizedalgorithms,andcloudplatforms,thisframeworkofersanovelsolutiontoenhanceprediction accuracy,timeliness,and grid integration efficiency for hybrid renewable energy systems.
Keywords: machine learning; wind power; solar power; power forecasting; system
近年来,随着全球气候变化的日益严峻,人们对减少二氧化碳排放的需求不断增长,截至2024年底,我国以风电、太阳能发电为主的新能源发电装机规模达到 ,首次超过火电装机规模。(剩余6281字)