基于ARIMA-LSTM的物流网络分拣中心货量预测模型探究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:0211 文献标志码:A 文章编号:2095-2945(2025)13-0046-05

Abstract:Withthevigorousdevelopmentofe-commercelogisticsnetworks,enhancinglogisticstransportationficiencyand reducinglaborcostshavebecomecoreelementsforthelogisticsindustrytostrengthenitscompetitivenessThisstudyfocuseson thecargovolumeforecastingfortransportroutesinthesortingcentersofe-commercelogisticsnetworks,aiming toacurately depictthedailyandevenhourlyfluctuationsincargovolumeoverthenext3Odaysthroughin-depthminingofhistoricalcargo volumedata.Specificall,wefirstconducted meticulouspreprocessingofdailycargovolumedatafromthepastfourmonthsand hourlycargovolumedatafromthepast3Odaysfrom57sortingcenters.Onthisbasis,weconstructedanAutoregresive IntegratedMovingAverage(ARIMA)modeltopredictthedailycargovolumeprofileoverthenext3Odays.Furthermore,we introducedaLong Short-TermMemory(LSTM)neuralnetworkmodeltoachieveprecisepredictionsof hourlycargovolumedata for the next 30 days.

Keywords: logistics network; transportation route;cargo volume profile; ARIMA model; LSTM model

现代物流是国民经济的核心,对经济发展至关重要,能促进市场繁荣、推动高质量发展。(剩余4099字)

目录
monitor