基于深度学习的裂隙智能提取研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP18 文献标志码:A 文章编号:2095-2945(2025)13-0009-05

Abstract:WiththerapiddevelopmentofChina’seconomicconstruction,engineeringconstructionismovinginahigher, deperandbroaderdirection.Inordertoensurethesafetyof projectconstruction,itisnecessarytoidentifytheenginering geologicalconditionsofthesitebeforeprojectconstruction.Asanimportantpartofrockmassstructure,fractureshavean importantimpactonengineeringgeologicalconditions.Therefore,extractingthestructureofcracksisveryimportantfor engineeringconstruction.Traditionalcrack structureextractionmethodsaretime-consumingandlabor-intensive,andhavepoor operability;theacuracyofcrackextractionmethodsusingtraditionalcomputertechologycannotmeetengineeringneedsandare poorinpracticality;however,therearefewresearchonusingdeeplearningtechnologytoextractfractures.Bystudyingthedeep learningnetworkoftheencoder-decoderarchitecture,thispaperdeterminesthattheimagesegmentationmodeltrainedbythe "U-Net++"frameworknetworkandthe"Resnet5O"encoder-decodernetworkcanefectivelyextractthefisurestructureoffield outcrop photos.

Keywords: crack extraction; image segmentation; deep learning; crack structure; extraction method

随着我国经济建设的高速发展,房屋建筑越来越高,地基基础越来越深,穿山隧道越来越长,水利水电工程越来越庞大,相应地,对于工程建设过程中的工程地质条件要求也越来越高,对工程地质信息的掌握也要越来越精确。(剩余6462字)

目录
monitor