基于改进YOLOv5s的SAR影像铁道检测技术研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391 文献标志码:A 文章编号:2095-2945(2025)13-0050-05

Abstract:Gaofen-SARsatelitesforrailroadinspectionhavetheadvantagesofwidecoverage,all-weatherandmetal sensitivity,butneedtosolvetheproblemofinstantdetectionofrlwaytargets.Forthisreasonanimprovedmodelcalled Lightweight-YOLOv5sisproposedbasedonYOLOv5s,whichisespeciallysuitablefordetectionofrailroadtargetsinSARimage. ByreducingtheMobile-Darknetbackbonefeatureextractionnetwork layers,weoptimizedthenetworkstructure;byaddingHDC andCBMmechanisms,weadjustedthesmalltargetsensoryfieldweightsandstrengthenthesmalltargetlinefacilityfeature extraction;byusing FPGMpruning,weeliminatedtheredundantfeaturemodulesandachievealightweightmodel;byusing VarifocalLossasthelossfunction,weequalizedthepositiveandnegativecategoriesandhighlightthecontributionofpositive examples.The results show that,the accuracy of Lightweight-YOLOv5s model achieves 9 7 . 6 % ,and the inference time reduces to 6.87ms.Comparedwiththeclasicalalgorithmsfordetectinglineartargetsinremotesensingimages,theperformanceisgreatly improved for instant detection of railroad targets.

Keywords: SAR; railroad inspection; rail target detection; YOLOv5s; lightweight network

铁道线路覆盖范围广、距离长,所处地区地形、地貌条件复杂多样,尤其是气候及地质条件复杂的山区,地震、洪水、泥石流等自然灾害易发,会严重威胁铁路系统安全稳定运行,需要即时准确地监测铁路所处环境情况,才能有效保障铁路安全。(剩余5705字)

目录
monitor