基于深度学习的车辆部件半自动标注研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391.4 文献标志码:A 文章编号:2095-2945(2025)13-0014-07

Abstract:Intheraofartifialinteligene,intelligentlossassssmenttechnologyusingdeplearningisageneraltrendin thedevelopmentandtransformationofautomobileinsurance.Itcangreatlyreduce thecostofmanuallossassessmentand improvetheefciencyoflossassessment;deeplearningmodelsrequirealargenumberofannotatedsamplesfortraining,but currentlythereisnopublicdatasetonvehicleinjurytypesandcomponents.Thispaperproposesasemi-automaticlabeling methodforvehicleparts,first,amodelthatcanberoughlylabeledistrainedthroughaseddataset,andthenthemodelis usedforautomaticlabelingofvehicleparts;onthebasisofautomaticlabeling,asmallnumberofmanualcorectionsaremade, andthenexpandedtothedataset,andthemodelisre-trainedtoimprovetheaccuracyofre-labeling.Theexperimentalresults showthatthesemi-automaticlabelingmethodcanefectivelyimprovethelabelingefciencyofvehiclepartsandreducethe labor and time costs required for data labeling work.

Keywords: deep learning; image segmentation; semi-automatic annotation; vehicle parts; data

据公安部统计,截至2024年底,我国汽车保有量突破4.5亿辆。(剩余9277字)

目录
monitor