基于YOLO-LTD的轻量化温室番茄成熟度检测

打开文本图片集
关键词:番茄;成熟度检测;YOLO-LTD;YOLOv11;GSConv;注意力机制;自适应空间特征融合;轻量化中图分类号:S641.2 文献标志码:A 文章编号:1673-2871(2025)11-052-13
Abstract:Toaddress the issuesof misedand falsedetections caused bycomplexbackgroundsand scale variations in tomato fruitmaturitydetection,aswellas thelimitationsofexistingmethods intermsofeficiencyanddeployment,this study proposes a lightweight greenhouse tomato maturity detection algorithm based onYOLO-LTD.Building upon YOLOvl1-nas the baseline,themodel introduces the following innovations:(1)Across-attentionmoduleis incorporated intothebackbonenetworktomtigatetheinterferenceofocclusionsbetweenleaves,stems,andfruitsondetectionaccuracy,thereby enhancing feature extraction capabilities for keyregions.(2)The lightweight GSConv module replaces standardconvolutions inthenck network,optimizingcomputational efficiencywhilepreserving feature representation,and reducing both model parameter countandcomputational complexity.(3)Anadaptivespatial feature fusionmoduleis embedded intheheadnetwork toalleviate inconsistenciesbetweenmulti-scalefeatures,furtherimprovingrobustnessand generalization.Experimentalresults demonstrate thatYOLO-LTDachieves amean average precision(mAP),recalland accuracy of 94.23% 95.44% ,and 92.07% ,respectively,with an inference time of 7.21 ms and a compact model size of 5.18Mb .Compared to YOLOv11-n,YOLO-LTD improves mAP, recall,andaccuracyby2.50 percentage points,2.80percentage points,and1.60percentagepoints,respectivelywhileexhibiting highereficiencyandsmalermodelsize.When evaluatedagainst Mask R-CNN,FasterR-CNN,andother YOLO variants,YOLO-LTDdemonstratessuperiorperformanceinbothaccuracyandeficiencyhighlightingitspotentialforwidespreadapplicationingreenhouseenvironments. This research provides a theoretical foundation and technical support for orchard yield estimation,crop growth monitoring,cultivationoptimization,and the development of tomato-pickingrobots.
Key words:Tomato; Maturitydetection; YOLO-LTD;YOLOv11; GSConv;Atentionmechanism; Adaptive spatial feature fusion; Lightweight model
番茄以丰富的营养价值和较高的产量优势成为我国种植面积最大的果蔬之一[1]。(剩余15453字)