基于改进RRT算法的机械臂路径规划

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:机械臂;路径规划;RRT算法;固定采样点;自适应步长;动态目标偏置中图分类号:TN919-34;TH112;TG659 文献标识码:A 文章编号:1004-373X(2026)01-0157-06

Roboticarmpathplanningbasedon improvedRRTalgorithm

LIWeida,JIANG Hong,ZHANG Xiangfeng,MA Benchi,CHEN Lin,ZHANG Pengfei (IntelligentManufacturingModern IndustrialCollege,XinjiangUniversity,Urumqi83Oo17,China)

Abstract:AnimprovedRRTalgorithmisproposed toeliminatetheblindsearch,shorten longcomputationtimeand decreaseredundant process points of therapid expansionrandomtree(RRT)algorithminroboticarm path planning.Firstly,a fixedsamplingfunctionwhichmakestheexpansionoftherandom treemoredirectionalisestablished.Secondly,adynamic targetbiasstrategyisaddedonthebasisofadaptivestepsize,which increasestherateofconvergencebyavoidingexcesive searchingoflocalregions.Finaly,tworandom treesareconstructedbyusingfixedsampling points,andthenthesearchis carriedut,whichincreasesexpansionspeedandrateofconvergence,andeliminatesblindnessof thealgorithm.Simulation results in simple environment show that the convergence time of the improved RRT algorithm is reduced by 18.3% ! 30% ,and 63.5%,espectivelyanditspathlengthisshortenedby14.1%,3.5%,nd41.6%,respectivelyelativetothoseoftethr threealgorithms.Thesimulationresultsincomplexenvironmentshowthattheconvergence timeof theimprovedRRTalgorithm isreducedby56.4%,43.3%,and67.6%,respectively,anditspathlengthisshortenedby16.1%,9.7%,and 34.2%, respectivelyelativetothoseofteerthreelgorits,whichprovestefectivenessoftheimproedalgoritinicasing therateofconvergenceandimprovingtheorentation.Atthesametime,theproposedalgorithmismoreadaptabletothecomplex environment.

Keywords:robotic arm; path planning;RRT algorithm;fixed sampling point;adaptive step size;dynamic target bias

0 引言

随着机械臂技术的不断发展,机械臂已经成为了各个领域的重要支撑工具,机械臂的优势包括可编程性、适应性、可远程操作、可携带各种传感器和各种设备,因此在汽车制造、电子制造和物流仓储等领域的应用不断扩大。(剩余8656字)

monitor
客服机器人