基于跨尺度特征融合的内窥镜图像增强算法

打开文本图片集
DOI:10.16652/j.issn.1004-373x.2026.01.006引用格式:,,.基于跨尺度特征融合的内窥镜图像增强算法[J].现代电子技术,2026,49(1):34-40.
关键词:内窥镜图像;深度特征融合;CFF;曝光异常;图像增强算法;金字塔池化模块中图分类号:TN911.73-34;TP394.1;TH691.9 文献标识码:A 文章编号:1004-373X(2026)01-0034-07
Endoscopic image enhancement algorithm based on cross-scale feature fusion
LIUXuyang1²,CAI Yun1,2 ,JIANGLin1,2,
(1.KLb 2.HubeiKeyLbaoalsdfid; 3.InstituteofRoboticsand InteligentSystems,WuhanUniversityofScienceandTechnology,Wuhan430o81,China)
Abstract:Theclinicalendoscopicimageoftensufersfromlow-qualityimagingduetounevensupplementary lightsources andreflectionsfromhumantisse mucus,resultinginpoorimagequalityforinstane,alargequantityofoverexposure.However, thecurrentdeep learning based imageenhancement algorithms havelowfeature extractioncapabilitiesduetofixed-sizefeature fusion,whichleadstopoorehancementefects.herefore,anedoscopicimageeancementalgorithmbasedoncrosscale featurefusionisproposed.Inthealgorithm,aconvolutionmodule(CM)isconstructedforhighperformancefeatureextractionand aspatial pyramidpoling-fast(SPF)moduleisusedtorealizethepoolingoperationoffeature mapswithdiffrent scales. Aditionally,cross-scalefeaturefusion(CFF)moduleisitroducedintodiferentsalesofetworklayrstochevemulti-scale featurefusionandcontextinformationpropagation,soastoimproveimagedetailcaptureandimageqality.Experimentalresults showthattheproposedalgorithmoutperforms theexistingalgorithmsinPSNRand SSIM,inwhichthePSNRisimproved by (20 9.9% ,and the SSIM by 15.4% ,achieving high-quality endoscopic image enhancement.
Keywords:endoscopic image;deepfeature fusion; CFF;exposureanomaly;image enhancement algorithm;pyramid pooling module
0 引言
图像曝光的一致性是获取高质量医学影像的关键因素之一。(剩余10681字)