基于卷积神经网络的高分辨率遥感影像目标边界提取方法

打开文本图片集
关键词:卷积神经网络;高分辨率遥感影像;目标边界提取;深层特征;特征增强;边界概率图中图分类号:TN911.73-34;TP391.41 文献标识码:A 文章编号:1004-373X(2026)01-0049-05
High resolution remote sensing image object boundary extraction method basedonconvolutional neuralnetwork
WANG Xiaohong1,² (1.School of Intelligence Science and Engineering,Qinghai Minzu University,Xining81oooo,China; 2.Geomatics TechnologyandApplicationKeyLaboratoryofQinghaiProvince,Xining81oooo,China)
Abstract:Inviewoftheimpactoffactorssuchasoccusionandrotationonobjectboundaryextractioninhigh-resolution remotesensingimages,aCNN-basedmethodforextractingobjectboundariesfromhigh-resolutionremotesensingimagesis proposed.Thehigh-resolutionremotesensing imageobjectboundaryextractionframework isimplemented byCNN,onthebasis of which,afeatureenhancementmoduleisintroducedtoavoidinsuficientrepresentationofsemanticinformationandlosof detailinformationintheshalowanddeepfeatureextractionofnetworkobjectboundaries.Thenetworklossfunctionis optimized,andhebjectboundaryapispreprocessdandthenconvertedintoaprobabilityapofboundaryinforationnd thenathresholdvalueissettoexcludeuncertainpixels,soastoenhanetherobustnessandaccuracyofmodelobjectboundary extraction.Theexperimentalresultsshowthattheproposed methodcanachieveacurateextractionofobjectboundaries,andis noteasilyaffectedbyremotesensingimagerotation.Inadition,ithasexcelentabilityofobjectboundaryextractionuder different degrees of occlusion.
Keywords:CNN;high resolutionremote sensing image;objectboundary extraction;deep feature;featureenhancement; boundary probability map
0 引言
高分辨率遥感影像作为现代地理信息获取的重要手段,其详细且精确的数据为环境规划、地理分析、资源勘探、灾害评估等多个领域提供了不可或缺的信息支持。(剩余5917字)